Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Intern Med ; 37(3): 980-991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37158452

RESUMO

BACKGROUND: Brucellosis in dogs caused by Brucella suis is an emerging zoonotic disease. OBJECTIVES: To document clinical characteristics, serology, microbiology, and clinical response to treatment in B. suis-seropositive dogs. ANIMALS: Longitudinal study of 27 privately-owned dogs. Dogs that tested positive by serology, culture, or real-time polymerase chain reaction (qPCR) were included in the study. METHODS: Clinical (physical examination and imaging) and laboratory (serology, hematology, serum biochemistry, and qPCR or culture) assessments were made at baseline and after approximately 3, 6, 12, and 18 months. RESULTS: Dogs were followed for 10 895 dog days, with 17/27 dogs completing the 18-month follow-up. Ten dogs had signs consistent with brucellosis before enrollment (n = 4), at baseline (n = 2) or during follow-up (n = 6), with 2 dogs experiencing relapse of historical signs. Antibody titers persisted for the duration of follow-up in 15/17 dogs (88%). Radiographic (n = 5) and ultrasound (n = 11) findings, of variable clinical relevance, were observed. Brucella DNA and organisms were detected in 3 dogs, all of which had clinical signs, including in the milk of a bitch around the time of whelping. Brucella DNA was not detected in blood (n = 92 samples), urine (n = 80), saliva (n = 95) or preputial swabs (n = 78) at any time during follow-up. Six dogs underwent treatment, all of which achieved clinical remission although remission was not reflected by decreasing antibody titers. CONCLUSIONS AND CLINICAL IMPORTANCE: Most dogs with B. suis infections have subclinical infections. Serology is poorly associated with clinical disease. Excretion of organisms appears rare except in whelping bitches. Clinical management using antibiotics with or without surgery is recommended.


Assuntos
Brucella suis , Brucelose , Animais , Brucella suis/genética , Estudos Longitudinais , Brucelose/diagnóstico , Brucelose/tratamento farmacológico , Brucelose/veterinária , Zoonoses , Antibacterianos/uso terapêutico , Cães
2.
Vet Microbiol ; 283: 109779, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257307

RESUMO

To date, antimicrobial susceptibility has not been reported for Australian Mycoplasma bovis isolates. This study determined minimal inhibitory concentrations (MICs) for 12 different antimicrobials against Australian M. bovis isolates and used whole genome sequencing to screen those showing high macrolide MICs for point mutations in target genes. Most lung tissue/swab samples from bovine respiratory disease cases (61/76, 80.3%) tested positive for M. bovis. A set of 50 representative isolates (50/61, 82.0%) that showed adequate growth, was used for MIC testing. Uniformly, low MIC values were confirmed for enrofloxacin (≤ 4 µg/mL), florfenicol (≤ 8 µg/mL), gamithromycin (≤ 2 µg/mL), spectinomycin (≤ 4 µg/mL), tetracycline (≤ 8 µg/mL), tiamulin (≤ 4 µg/mL), and tulathromycin (≤ 0.5 µg/mL). A small proportion (10%) of isolates exhibited high MICs (≥ 32 µg/mL) for tildipirosin, tilmicosin, tylosin, and lincomycin, which were above the epidemiological cut-off values for each antimicrobial (≥ 4 µg/mL). These isolates, originating from three Australian states, underwent whole genome sequencing/multilocus sequencing typing and were compared with the reference strain PG45 to investigate mutations that might be linked with the high macrolide/lincosamide MICs. All five belonged to ST52 and two macrolide associated mutations were identified within the 23 S rRNA gene (A2058G in two sequenced isolates and G748A in all sequenced isolates). Four additional 23 S rRNA gene mutations did not appear to be linked to macrolide resistance. Whilst the majority of Australian M. bovis isolates appear susceptible to the tested antimicrobials, emerging macrolide resistance was detected in three Australian states and requires continued monitoring.


Assuntos
Anti-Infecciosos , Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Animais , Bovinos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Austrália/epidemiologia , Doenças dos Bovinos/epidemiologia , Farmacorresistência Bacteriana/genética , Macrolídeos , Testes de Sensibilidade Microbiana/veterinária , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária
3.
Front Microbiol ; 13: 822990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359740

RESUMO

The genus Anastrepha (Diptera Tephritidae) includes some of the most important fruit fly pests in the Americas. Here, we studied the gut bacterial community of 3rd instar larvae of Anastrepha fraterculus sp. 1 through Next Generation Sequencing (lllumina) of the V3-V4 hypervariable region within the 16S rRNA gene. Gut bacterial communities were compared between host species (guava and peach), and geographical origins (Concordia and Horco Molle in Argentina) representing distinct ecological scenarios. In addition, we explored the effect of spatial scale by comparing the samples collected from different trees within each geographic origin and host species. We also addressed the effect of fruit size on bacterial diversity. The gut bacterial community was affected both by host species and geographic origin. At smaller spatial scales, the gut bacterial profile differed among trees of the same species and location at least in one host-location combination. There was no effect of fruit size on the larval gut bacteriome. Operational Taxonomic Units (OTUs) assigned to Wolbachia, Tatumella and Enterobacter were identified in all samples examined, which suggest potential, non-transient symbioses. Better knowledge on the larval gut bacteriome contributes valuable information to develop sustainable control strategies against A. fraterculus targeting key symbionts as the Achilles' heel to control this important fruit fly pest.

5.
Microb Genom ; 8(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748707

RESUMO

The Pacific oyster (PO), Crassostrea gigas, is an important commercial marine species but periodically experiences large stock losses due to disease events known as summer mortality. Summer mortality has been linked to environmental perturbations and numerous viral and bacterial agents, indicating this disease is multifactorial in nature. In 2013 and 2014, several summer mortality events occurred within the Port Stephens estuary (NSW, Australia). Extensive culture and molecular-based investigations were undertaken and several potentially pathogenic Vibrio species were identified. To improve species identification and genomically characterise isolates obtained from this outbreak, whole-genome sequencing (WGS) and subsequent genomic analyses were performed on 48 bacterial isolates, as well as a further nine isolates from other summer mortality studies using the same batch of juveniles. Average nucleotide identity (ANI) identified most isolates to the species level and included members of the Photobacterium, Pseudoalteromonas, Shewanella and Vibrio genera, with Vibrio species making up more than two-thirds of all species identified. Construction of a phylogenomic tree, ANI analysis, and pan-genome analysis of the 57 isolates represents the most comprehensive culture-based phylogenomic survey of Vibrios during a PO summer mortality event in Australian waters and revealed large genomic diversity in many of the identified species. Our analysis revealed limited and inconsistent associations between isolate species and their geographical origins, or host health status. Together with ANI and pan-genome results, these inconsistencies suggest that to determine the role that microbes may have in Pacific oyster summer mortality events, isolate identification must be at the taxonomic level of strain. Our WGS data (specifically, the accessory genomes) differentiated bacterial strains, and coupled with associated metadata, highlight the possibility of predicting a strain's environmental niche and level of pathogenicity.


Assuntos
Crassostrea , Gammaproteobacteria , Vibrio , Animais , Filogenia , Austrália/epidemiologia , Surtos de Doenças
6.
Microorganisms ; 9(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204544

RESUMO

Bovine respiratory disease (BRD) causes high morbidity and mortality in beef cattle worldwide. Antimicrobial resistance (AMR) monitoring of BRD pathogens is critical to promote appropriate antimicrobial stewardship in veterinary medicine for optimal treatment and control. Here, the susceptibility of Mannheimia haemolytica and Pasteurella multicoda isolates obtained from BRD clinical cases (deep lung swabs at post-mortem) among feedlots in four Australian states (2014-2019) was determined for 19 antimicrobial agents. The M. haemolytica isolates were pan-susceptible to all tested agents apart from a single macrolide-resistant isolate (1/88; 1.1%) from New South Wales (NSW). Much higher frequencies of P. multocida isolates were resistant to tetracycline (18/140; 12.9%), tilmicosin (19/140; 13.6%), tulathromycin/gamithromycin (17/140; 12.1%), and ampicillin/penicillin (6/140; 4.6%). Five P. multocida isolates (3.6%), all obtained from NSW in 2019, exhibited dual resistance to macrolides and tetracycline, and a further two Queensland isolates from 2019 (1.4%) exhibited a multidrug-resistant phenotype to ampicillin/penicillin, tetracycline, and tilmicosin. Random-amplified polymorphic DNA (RAPD) typing identified a high degree of genetic homogeneity among the M. haemolytica isolates, whereas P. multocida isolates were more heterogeneous. Illumina whole genome sequencing identified the genes msr(E) and mph(E)encoding macrolide resistance, tet(R)-tet(H) or tet(Y) encoding tetracycline resistance, and blaROB-1 encoding ampicillin/penicillin resistance in all isolates exhibiting a corresponding resistant phenotype. The exception was the tilmicosin-resistant, tulathromycin/gamithromycin-susceptible phenotype identified in two Queensland isolates, the genetic basis of which could not be determined. These results confirm the first emergence of AMR in M. haemolytica and P. multocida from BRD cases in Australia, which should be closely monitored.

7.
BMC Microbiol ; 19(Suppl 1): 287, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870316

RESUMO

BACKGROUND: The Sterile Insect Technique (SIT) is being applied for the management of economically important pest fruit flies (Diptera: Tephritidae) in a number of countries worldwide. The success and cost effectiveness of SIT depends upon the ability of mass-reared sterilized male insects to successfully copulate with conspecific wild fertile females when released in the field. METHODS: We conducted a critical analysis of the literature about the tephritid gut microbiome including the advancement of methods for the identification and characterization of microbiota, particularly next generation sequencing, the impacts of irradiation (to induce sterility of flies) and fruit fly rearing, and the use of probiotics to manipulate the fruit fly gut microbiota. RESULTS: Domestication, mass-rearing, irradiation and handling, as required in SIT, may change the structure of the fruit flies' gut microbial community compared to that of wild flies under field conditions. Gut microbiota of tephritids are important in their hosts' development, performance and physiology. Knowledge of how mass-rearing and associated changes of the microbial community impact the functional role of the bacteria and host biology is limited. Probiotics offer potential to encourage a gut microbial community that limits pathogens, and improves the quality of fruit flies. CONCLUSIONS: Advances in technologies used to identify and characterize the gut microbiota will continue to expand our understanding of tephritid gut microbial diversity and community composition. Knowledge about the functions of gut microbes will increase through the use of gnotobiotic models, genome sequencing, metagenomics, metatranscriptomics, metabolomics and metaproteomics. The use of probiotics, or manipulation of the gut microbiota, offers significant opportunities to enhance the production of high quality, performing fruit flies in operational SIT programs.


Assuntos
Fenômenos Fisiológicos Bacterianos , Comportamento Sexual Animal/fisiologia , Tephritidae/fisiologia , Animais , Domesticação , Feminino , Microbioma Gastrointestinal , Controle de Insetos , Masculino , Controle Biológico de Vetores , Tephritidae/microbiologia
8.
Microbiome ; 6(1): 85, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29729663

RESUMO

BACKGROUND: Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets). RESULTS: Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains. CONCLUSIONS: Variation in the gut bacterial communities of B. tryoni larvae depends on diet, domestication, and horizontal acquisition. Bacterial variation in wild larvae suggests that more than one bacterial species can perform the same functional role; however, Asaia could be an important gut bacterium in larvae and warrants further study. A greater understanding of the functions of the bacteria detected in larvae could lead to increased fly quality and performance as part of the SIT.


Assuntos
Acetobacteraceae , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Tephritidae/microbiologia , Acetobacteraceae/classificação , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Animais , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Larva/microbiologia , Simbiose/fisiologia
9.
Dis Aquat Organ ; 125(3): 227-242, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792421

RESUMO

From January to June 2013 and November to January 2014, mass mortalities were reported in Pacific oysters Crassostrea gigas cultivated in Port Stephens estuary, New South Wales, Australia. In some cases, 100% mortality was reported in both triploid and diploid C. gigas, although native species of oyster cultivated in the same areas remained unaffected. Histological examination of oysters sampled from the time of mortality events revealed consistent but non-specific pathology, involving a diffuse haemocytic infiltrate in the connective tissue surrounding the digestive gland, extending into the mantle in some instances, but no other signs of any infectious aetiological agent. We conducted a structured survey in early January 2014 to compare samples of C. gigas from affected and unaffected areas by bacteriology and histopathology. Quantitative PCR excluded involvement of ostreid herpesvirus-1 (OsHV-1) in these mortality events. To determine whether a directly transmissible aetiological agent was responsible for the mortalities, naïve C. gigas sourced from an estuary where no evidence of mortality was reported were challenged with material derived from affected oysters. Significant mortality was only observed in naïve C. gigas directly inoculated with purified cultures of Vibrio spp. isolated from affected oysters, but this could not be replicated by cohabitation with naïve C. gigas. Analysis of environmental data indicated that mortality events generally coincided with periods of low salinity and high temperature. The results from this study suggest that the cause of the mortality events was multifactorial in nature and not due to any single directly transmissible aetiological agent.


Assuntos
Crassostrea , Animais , Bactérias/isolamento & purificação , DNA Viral/isolamento & purificação , Meio Ambiente , Herpesviridae , New South Wales , Parasitos
10.
J Econ Entomol ; 110(1): 298-300, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039426

RESUMO

Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique.


Assuntos
Microbioma Gastrointestinal , Tephritidae/microbiologia , Leveduras/isolamento & purificação , Animais , DNA Espaçador Ribossômico/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , RNA Fúngico/genética , RNA Ribossômico 5,8S/genética , Tephritidae/crescimento & desenvolvimento , Leveduras/genética
11.
Open Biol ; 5(1): 140175, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25589579

RESUMO

Aminopeptidases are part of the arsenal of virulence factors produced by bacterial pathogens that inactivate host immune peptides. Mycoplasma hyopneumoniae is a genome-reduced pathogen of swine that lacks the genetic repertoire to synthesize amino acids and relies on the host for availability of amino acids for growth. M. hyopneumoniae recruits plasmin(ogen) onto its cell surface via the P97 and P102 adhesins and the glutamyl aminopeptidase MHJ_0125. Plasmin plays an important role in regulating the inflammatory response in the lungs of pigs infected with M. hyopneumoniae. We show that recombinant MHJ_0461 (rMHJ_0461) functions as a leucine aminopeptidase (LAP) with broad substrate specificity for leucine, alanine, phenylalanine, methionine and arginine and that MHJ_0461 resides on the surface of M. hyopneumoniae. rMHJ_0461 also binds heparin, plasminogen and foreign DNA. Plasminogen bound to rMHJ_0461 was readily converted to plasmin in the presence of tPA. Computational modelling identified putative DNA and heparin-binding motifs on solvent-exposed sites around a large pore on the LAP hexamer. We conclude that MHJ_0461 is a LAP that moonlights as a multifunctional adhesin on the cell surface of M. hyopneumoniae.


Assuntos
Proteínas de Bactérias/metabolismo , Leucil Aminopeptidase/metabolismo , Proteínas de Membrana/metabolismo , Mycoplasma hyopneumoniae/enzimologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Heparina/metabolismo , Leucil Aminopeptidase/química , Leucil Aminopeptidase/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Plasminogênio/metabolismo , Ligação Proteica , Especificidade por Substrato
12.
Cell Microbiol ; 17(3): 425-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25293691

RESUMO

Mycoplasma hyopneumoniae, the aetiological agent of porcine enzootic pneumonia, regulates the presentation of proteins on its cell surface via endoproteolysis, including those of the cilial adhesin P123 (MHJ_0194). These proteolytic cleavage events create functional adhesins that bind to proteoglycans and glycoproteins on the surface of ciliated and non-ciliated epithelial cells and to the circulatory host molecule plasminogen. Two dominant cleavage events of the P123 preprotein have been previously characterized; however, immunoblotting studies suggest that more complex processing events occur. These extensive processing events are characterized here. The functional significance of the P97 cleavage fragments is also poorly understood. Affinity chromatography using heparin, fibronectin and plasminogen as bait and peptide arrays were used to expand our knowledge of the adhesive capabilities of P123 cleavage fragments and characterize a novel binding motif in the C-terminus of P123. Further, we use immunohistochemistry to examine in vivo, the biological significance of interactions between M. hyopneumoniae and fibronectin and show that M. hyopneumoniae induces fibronectin deposition at the site of infection on the ciliated epithelium. Our data supports the hypothesis that M. hyopneumoniae possesses the molecular machinery to influence key molecular communication pathways in host cells.


Assuntos
Adesinas Bacterianas/metabolismo , Mycoplasma hyopneumoniae/metabolismo , Processamento de Proteína Pós-Traducional , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Fibronectinas/metabolismo , Glicoproteínas/metabolismo , Immunoblotting , Imuno-Histoquímica , Dados de Sequência Molecular , Mycoplasma hyopneumoniae/genética , Polissacarídeos/metabolismo , Análise Serial de Proteínas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Espectrometria de Massas em Tandem
13.
mBio ; 3(2)2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493032

RESUMO

UNLABELLED: Mycoplasma hyopneumoniae causes enormous economic losses to swine production worldwide by colonizing the ciliated epithelium in the porcine respiratory tract, resulting in widespread damage to the mucociliary escalator, prolonged inflammation, reduced weight gain, and secondary infections. Protein Mhp684 (P146) comprises 1,317 amino acids, and while the N-terminal 400 residues display significant sequence identity to the archetype cilium adhesin P97, the remainder of the molecule is novel and displays unusual motifs. Proteome analysis shows that P146 preprotein is endogenously cleaved into three major fragments identified here as P50(P146), P40(P146), and P85(P146) that reside on the cell surface. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) identified a semitryptic peptide that delineated a major cleavage site in Mhp684. Cleavage occurred at the phenylalanine residue within sequence (672)ATEF↓QQ(677), consistent with a cleavage motif resembling S/T-X-F↓X-D/E recently identified in Mhp683 and other P97/P102 family members. Biotinylated surface proteins recovered by avidin chromatography and separated by two-dimensional gel electrophoresis (2-D GE) showed that more-extensive endoproteolytic cleavage of P146 occurs. Recombinant fragments F1(P146)-F3(P146) that mimic P50(P146), P40(P146), and P85(P146) were constructed and shown to bind porcine epithelial cilia and biotinylated heparin with physiologically relevant affinity. Recombinant versions of F3(P146) generated from M. hyopneumoniae strain J and 232 sequences strongly bind porcine plasminogen, and the removal of their respective C-terminal lysine and arginine residues significantly reduces this interaction. These data reveal that P146 is an extensively processed, multifunctional adhesin of M. hyopneumoniae. Extensive cleavage coupled with variable cleavage efficiency provides a mechanism by which M. hyopneumoniae regulates protein topography. IMPORTANCE: Vaccines used to control Mycoplasma hyopneumoniae infection provide only partial protection. Proteins of the P97/P102 families are highly expressed, functionally redundant molecules that are substrates of endoproteases that generate multifunctional adhesin fragments on the cell surface. We show that P146 displays a chimeric structure consisting of an N terminus, which shares sequence identity with P97, and novel central and C-terminal regions. P146 is endoproteolytically processed at multiple sites, generating at least nine fragments on the surface of M. hyopneumoniae. Dominant cleavage events occurred at S/T-X-F↓X-D/E-like sites generating P50(P146), P40(P146), and P85(P146). Recombinant proteins designed to mimic the major cleavage fragments bind porcine cilia, heparin, and plasminogen. P146 undergoes endoproteolytic processing events at multiple sites and with differential processing efficiency, generating combinatorial diversity on the surface of M. hyopneumoniae.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Membrana/metabolismo , Mycoplasma hyopneumoniae/metabolismo , Mycoplasma hyopneumoniae/patogenicidade , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatografia de Afinidade , Cromatografia Líquida , Cílios/metabolismo , Eletroforese em Gel Bidimensional , Células Epiteliais/metabolismo , Heparina/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Proteólise , Proteoma/análise , Suínos , Espectrometria de Massas em Tandem
14.
J Proteome Res ; 11(3): 1924-36, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22229926

RESUMO

P97 and P102 paralogues occur as endoproteolytic cleavage fragments on the surface of Mycoplasma hyopneumoniae that bind glycosaminoglycans, plasminogen, and fibronectin and perform essential roles in colonization of ciliated epithelia. We show that the P102 paralogue Mhp384 is efficiently cleaved at an S/T-X-F↓X-D/E-like site, creating P60(384) and P50(384). The P97 paralogue Mhp385 is inefficiently cleaved, with tryptic peptides from a 115 kDa protein (P115(385)) and 88 kDa (P88(385)) and 27 kDa (P27(385)) cleavage fragments identified by LC-MS/MS. This is the first time a preprotein belonging to the P97 and P102 paralogue families has been identified by mass spectrometry. The semitryptic peptide (752)IQFELEPISLNV(763) denotes the C-terminus of P88(385) and defines the novel cleavage site (761)L-N-V↓A-V-S(766) in Mhp385. P115(385), P88(385), P27(385), P60(384), and P50(384) were shown to reside extracellularly, though it is unknown how the fragments remain attached to the cell surface. Heparin- and cilium-binding sites were identified within P60(384), P50(384), and P88(385). No primary function was attributed to P27(385); however, this molecule contains four tandem R1 repeats with similarity to porcine collagen type VI (α3 chain). P97 and P102 paralogue families are adhesins targeted by several proteases with different cleavage efficiencies, and this process generates combinatorial complexity on the surface of M. hyopneumoniae.


Assuntos
Adesinas Bacterianas/metabolismo , Cílios/metabolismo , Heparina/metabolismo , Interações Hospedeiro-Patógeno , Mycoplasma hyopneumoniae/fisiologia , Proteólise , Adesinas Bacterianas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Sítios de Ligação , Células Cultivadas , Expressão Gênica , Dados de Sequência Molecular , Mycoplasma hyopneumoniae/metabolismo , Óperon , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Homologia de Sequência de Aminoácidos , Traqueia/citologia
15.
Cell Microbiol ; 14(1): 81-94, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21951786

RESUMO

Mycoplasma hyopneumoniae is a major, economically damaging respiratory pathogen. Although M. hyopneumoniae cells bind plasminogen, the identification of plasminogen-binding surface proteins and the biological ramifications of acquiring plasminogen requires further investigation. mhp182 encodes a highly expressed 102 kDa protein (P102) that undergoes proteolytic processing to generate surface-located N-terminal 60 kDa (P60) and C-terminal 42 kDa (P42) proteins of unknown function. We show that recombinant P102 (rP102) binds plasminogen at physiologically relevant concentrations (K(D) ~ 76 nM) increasing the susceptibility of plasmin(ogen) to activation by tissue-specific plasminogen activator (tPA). Recombinant proteins constructed to mimic P60 (rP60) and P42 (rP42) also bound plasminogen at physiologically significant levels. M. hyopneumoniae surface-bound plasminogen was activated by tPA and is able to degrade fibrinogen, demonstrating the biological functionality of M. hyopneumoniae-bound plasmin(ogen) upon activation. Plasmin(ogen) was readily detected in porcine ciliated airways and plasmin levels were consistently higher in bronchoalveolar lavage fluid from M. hyopneumoniae-infected animals. Additionally, rP102 and rP42 bind fibronectin with K(D) s of 26 and 33 nM respectively and recombinant P102 proteins promote adherence to porcine kidney epithelial-like cells. The multifunctional binding ability of P102 and activation of M. hyopneumoniae-sequestered plasmin(ogen) by an exogenous activator suggests P102 plays an important role in virulence.


Assuntos
Adesinas Bacterianas/metabolismo , Fibrinolisina/metabolismo , Fibronectinas/metabolismo , Mycoplasma hyopneumoniae/metabolismo , Plasminogênio/metabolismo , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Células Cultivadas , Células Epiteliais/metabolismo , Dados de Sequência Molecular , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/patogenicidade , Pneumonia Suína Micoplasmática/microbiologia , Ligação Proteica , Proteínas Recombinantes/metabolismo , Suínos
16.
J Biol Chem ; 286(12): 10097-104, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21245147

RESUMO

Mycoplasma hyopneumoniae is the causative pathogen of porcine enzootic pneumonia, an economically significant disease that disrupts the mucociliary escalator in the swine respiratory tract. Expression of Mhp107, a P97 paralog encoded by the gene mhp107, was confirmed using ESI-MS/MS. To investigate the function of Mhp107, three recombinant proteins, F1(Mhp107), F2(Mhp107), and F3(Mhp107), spanning the N-terminal, central, and C-terminal regions of Mhp107 were constructed. Colonization of swine by M. hyopneumoniae requires adherence of the bacterium to ciliated cells of the respiratory tract. Recent studies have identified a number of M. hyopneumoniae adhesins that bind heparin, fibronectin, and plasminogen. F1(Mhp107) was found to bind porcine heparin (K(D) ∼90 nM) in a dose-dependent and saturable manner, whereas F3(Mhp107) bound fibronectin (K(D) ∼180 nM) at physiologically relevant concentrations. F1(Mhp107) also bound porcine plasminogen (K(D) = 24 nM) in a dose-dependent and physiologically relevant manner. Microspheres coated with F3(Mhp107) mediate adherence to porcine kidney epithelial-like (PK15) cells, and all three recombinant proteins (F1(Mhp107)-F3(Mhp107)) bound swine respiratory cilia. Together, these findings indicate that Mhp107 is a member of the multifunctional M. hyopneumoniae adhesin family of surface proteins and contributes to both adherence to the host and pathogenesis.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Mycoplasma hyopneumoniae/química , Mycoplasma hyopneumoniae/metabolismo , Adesinas Bacterianas/genética , Animais , Aderência Bacteriana/fisiologia , Fibronectinas/química , Fibronectinas/metabolismo , Genes Bacterianos/fisiologia , Heparina/química , Heparina/metabolismo , Mycoplasma hyopneumoniae/genética , Plasminogênio/química , Plasminogênio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos
17.
Mol Microbiol ; 78(2): 444-58, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20879998

RESUMO

Mycoplasma hyopneumoniae, the causative agent of porcine enzootic pneumonia, adheres to ciliated respiratory epithelia resulting in ciliostasis and epithelial cell death. The cilium adhesin P97 (Mhp183) contains two repeat regions, designated R1 and R2, that play key roles in adherence. Eight pentapeptide repeats in R1 are sufficient to bind porcine cilia; however, both R1 and R2 are needed to bind heparin. Mhp271, a paralogue of P97, is the only other M. hyopneumoniae protein to contain both R1 and R2 repeats. These repeats are arranged as a set of three pentapeptide repeats (designated R1A271), two decapeptide repeats (designated R2271), and a second set of six pentapeptide repeats (designated R1B271). To determine their function, recombinant proteins containing R1A271) (F1271) and R2271-R1B271 (F2271) were constructed and used in in vitro binding assays. F2271, but not F1271, bound heparin (K(D)=8.1 ± 0.4 nM), fibronectin (K(D)=174 ± 13 nM) and porcine cilia. Pre-incubation of F2271 with 100 µM heparin blocked cilium binding by ~69%. Cell surface shaving with trypsin combined with two-dimensional liquid chromatography coupled to tandem mass spectrometry analysis identified Mhp271 as surface-exposed. Our data suggest that both R1 and R2 in Mhp271 are involved in binding to host molecules.


Assuntos
Adesinas Bacterianas/metabolismo , Cílios/microbiologia , Fibronectinas/metabolismo , Heparina/metabolismo , Mycoplasma hyopneumoniae/genética , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Bacteriano/genética , Dados de Sequência Molecular , Mycoplasma hyopneumoniae/metabolismo , Proteômica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos
18.
J Biol Chem ; 285(44): 33971-8, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20813843

RESUMO

Porcine enzootic pneumonia is a chronic respiratory disease that affects swine. The etiological agent of the disease, Mycoplasma hyopneumoniae, is a bacterium that adheres to cilia of the swine respiratory tract, resulting in loss of cilia and epithelial cell damage. A M. hyopneumoniae protein P116, encoded by mhp108, was investigated as a potential adhesin. Examination of P116 expression using proteomic analyses observed P116 as a full-length protein and also as fragments, ranging from 17 to 70 kDa in size. A variety of pathogenic bacterial species have been shown to bind the extracellular matrix component fibronectin as an adherence mechanism. M. hyopneumoniae cells were found to bind fibronectin in a dose-dependent and saturable manner. Surface plasmon resonance was used to show that a recombinant C-terminal domain of P116 bound fibronectin at physiologically relevant concentrations (K(D) 24 ± 6 nm). Plasmin(ogen)-binding proteins are also expressed by many bacterial pathogens, facilitating extracellular matrix degradation. M. hyopneumoniae cells were found to also bind plasminogen in a dose-dependent and saturable manner; the C-terminal domain of P116 binds to plasminogen (K(D) 44 ± 5 nm). Plasminogen binding was abolished when the C-terminal lysine of P116 was deleted, implicating this residue as part of the plasminogen binding site. P116 fragments adhere to the PK15 porcine kidney epithelial-like cell line and swine respiratory cilia. Collectively these data suggest that P116 is an important adhesin and virulence factor of M. hyopneumoniae.


Assuntos
Adesinas Bacterianas/química , Cílios/metabolismo , Fibronectinas/química , Mycoplasma hyopneumoniae/metabolismo , Plasminogênio/química , Animais , Pulmão/microbiologia , Microesferas , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteômica/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...